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Département de Mécanique, LadHyX, Ecole Polytechnique, 91128 Palaiseau, France

Received 20 April 2004; accepted 9 April 2005
Abstract

A ribbon hanging in a vertical air stream experiences sudden vibrations by flutter when the flow velocity reaches a

critical value. The experiments conducted here for strips made of different materials show two distinct behaviours

depending on the length of the strip. For short strips, the critical flow velocity depends strongly on the length, whereas

for longer strips the critical velocity becomes independent of the length. These behaviours are analysed using a model

originally derived by Datta, based on a slender-body approximation and unsteady potential flow theory. This yields an

equation of motion similar to that pertaining to a hanging pipe-conveying fluid. The corresponding critical velocities are

in relatively good agreement with those of the experiments for a set of 12 different ribbons. An asymptotic critical

velocity may thus be defined corresponding to the limit of very long ribbons. The model predicts that this velocity only

depends on the ratio between the fluid added mass and the ribbon mass. This is compared with experiments using strips

of various widths and materials, and relation is made to the case of a hanging fluid-conveying pipe, addressed in a

recent paper, and with the case of long towed cylinders.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Vibration of flexible membranes and plates due to axial air-flow is an important issue, for instance, in paper

manufacturing and paper printing (Watanabe et al., 2002a). In those industries, long bands of paper are fed through

machines at high speed. Paper is consequently swept by an air-flow which is likely to cause oscillatory instabilities. Such

vibrations can provoke folding, wrinkling and even tearing of the paper bands, thereby limiting the production pace.

The onset of such instabilities depends on the flow velocity, the tension of the paper as well as its material and geometric

characteristics.

An important parameter in the physics of this phenomenon is the ratio between the length, L, and the width, B, of the

flexible structure, Fig. 1. Typical values of this ratio in the literature are given in Table 1. Limit values of the aspect ratio

L=B are associated with quite different phenomena and models. The case of small aspect ratios, say L=Bo1,

corresponds to flags or sheets and also to the particular case of filaments in a flowing soap film, as in Zhang et al. (2000)

and Farnell et al. (2004a,b). Experiments in that range may be found, for instance, in Watanabe et al. (2002a), Huang

(1995) and Yamaguchi et al. (2000). Theoretical approaches, see Paı̈doussis (2003) for a review, have shown that these
e front matter r 2005 Elsevier Ltd. All rights reserved.

uidstructs.2005.04.009

ing author. Tel.: +331 69 33 36 01; fax: +33 1 69 33 30 30.

ess: delangre@ladhyx.polytechnique.fr (E. de Langre).

www.elsevier.com/locate/jfs


ARTICLE IN PRESS

Table 1

Aspect ratio and dominant tensioning effect in experiments

L=B Tensioning effect Comment

Zhang et al. (2000) 0 Friction Filament in soap film

Watanabe et al. (2002a) 0.25–1.4 Friction

Huang (1995) 0.67–1.7 Friction

Yamaguchi et al. (2000) 1.2–12 Friction

Datta and Gottenberg (1975) 4–22 Gravity

Bejan (1982) 10–16 Friction Falling ribbon

Present paper 4–50 Gravity
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Fig. 1. Geometrical parameters of a ribbon subjected to axial flow.
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cases may be approximated by considering a 2-D approximation in the ðx; yÞ plane, Fig. 1. Conversely, large aspect
ratios correspond to strips or ribbons. Experiments by Datta and Gottenberg (1975) and Bejan (1982) fall in that range.

For these geometries a slender-body approximation is more appropriate, where the fluctuating velocities resulting from

the deformation are mainly in the ðy; zÞ plane, transverse to the axis of the ribbon. This yields models similar to those

pertaining to other slender bodies in axial flow, such as cylinders. Note that for such slender ribbon, experiments are

usually done with flow in the vertical direction, as gravity would not allow horizontal strips to have a straight initial

position. The consequences in terms of the main tensioning effect, friction for horizontal structures and gravity for

vertical ones, will be discussed further.

In this paper our purpose is to explore the case of large aspect ratios only. It should be noted here that another aspect

ratio may also be defined in terms of l=B, where l is the scale of variation of the deflection along the x-axis, Fig. 1. The

slender-body approximation, which we shall use in this paper, is more precisely associated with the assumption that

lbB. In all cases considered here we shall have L=Bb1 and l=Bb1.

A strip hanging in a vertical air-flow is observed to vibrate when the flow velocity is raised above a critical value, as

shown by Datta and Gottenberg (1975) in experiments with Mylar strips. These authors also developed a model based

on unsteady potential flow theory using the slender-body approximation mentioned above. In their computations the

length of the hanging ribbon had a rather complex effect on the critical flow velocity that causes flutter: for short

ribbons the critical velocity decreased with length whereas it was increasing with length for longer ribbons. Yadykin

et al. (2001), in a computational approach of the same system, also found a decrease then an increase of the critical

velocity for hanging ribbons of increasing length, for both linear and nonlinear approximations of the dynamics. On

this particular issue of the effect of length, the experimental results of Datta and Gottenberg (1975) were not very

conclusive, because of the scatter of data.
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For other slender systems subjected to axial flow and with a downstream end free, such evolutions of the critical

velocity, or more generally of the characteristics of the instability, have been reported. In those systems friction due to

the flow is the cause of axial tension, in a manner somewhat equivalent to gravity in hanging systems. Ni and Hansen

(1978) reported that in their experiment of water flow along a cable there exists an ‘‘active’’ length near the downstream

end where most of the deformation occurs. For long cables they showed that this active length is more relevant than the

true length to model the instability of the cable. They interpreted this effect by the attenuation of motion resulting from

the increasing tension near the upstream end. Paı̈doussis (1966) noted that, in experiments on axial flow along cylinders,

as the length is increased buckling disappears. Triantafyllou and Chryssostomidis (1984), considering only the

divergence instabilities of a flexible cylinder with external flow found that the critical velocity becomes independent of

length for very long cylinders. The case of a string (Triantafyllou and Chryssostomidis, 1985), though quite different in

nature, or that of a filament (Schouveiler et al., 2004), also showed a strong influence of length. For axial flow along

plates of various length-to-width ratios, also tensioned by friction, similar effects have been observed. Huang (1995)

noted that for long plates under flow the motion is confined in a region close to the downstream end. Yamaguchi et al.

(2000), and Watanabe et al. (2002b) defined several regimes in terms of the influence of length on the stability of plates

in axial flow.

A parallel problem is that of a hanging pipe-conveying fluid, see Paı̈doussis (1998) for an extensive review. Recently,

in Doaré and de Langre (2002), it was shown that an asymptotic régime does exist for long pipes, where the

characteristics of the instabilities do not depend on the pipe length. This was found both in experiments and in

computations using a standard model for the dynamics of the fluid-conveying pipe tensioned by gravity. The transition

length between the two regimes could be simply derived by considering the local stability of bending waves.

The aim of the present paper is to conduct, for hanging ribbons under axial flow, an analysis similar to that of Doaré

and de Langre (2002). In particular we seek to determine whether an asymptotic regime with constant critical velocity

exists, as in pipes, or does not, as predicted by Datta and Gottenberg (1975) and Yadykin et al. (2001). In Section 2, new

experimental results are given. They are analysed in Section 3 using the unsteady potential flow model of Datta and

Gottenberg (1975). These results are discussed in Section 4.
2. Experiments

2.1. Experimental set-up

Tested ribbons are made of four different materials: paper, Mylar, fabric and silk. The paper is a classical printer

paper, the fabric is from cotton sheets, the Mylar is a polyester film used as dielectrics, and the silk is taken from an

advertising streamer. The flexural rigidity D of each ribbon is measured through the buckling height hc which is the

minimum height for which a vertical strip clamped at its bottom buckles under its own weight (Timoshenko, 1961)

D ¼
h3cmg

7:83
, (1)

where g denotes gravity and m is the mass per unit area.

Three different ribbon widths B are selected for each material: B ¼ 20; 30, and 54mm. Hence, a set of 12 different

ribbons is investigated, and for each set several lengths are tested. The four materials have very different characteristics,

as detailed in Table 2. The length of ribbons varies from L ¼ 0:2 to L ¼ 1m, so that the aspect ratio ranges

approximately from L=B ¼ 4 to L=B ¼ 50. A given ribbon is hung in a vertical wind tunnel of diameter d ¼ 194mm.

The Reynolds number is here Re ’ 5� 105 based on U ¼ 4m=s, a typical flow velocity, and the diameter of the test-

section, so that the flow is fully turbulent. With a fine grid, a honeycomb and a convergent shape at the inlet, the

experimental set-up provides a low turbulence level, of less than 0.1%, so that we may assume the flow conditions to be

uniform and steady.

The flow velocity is progressively raised until the critical velocity Uc is reached where steady vibrations are observed

in the ðx; yÞ plane, Fig. 2. To analyse the dependence of Uc on L, we vary the length of the strip by progressively

shortening it. About 300 values of critical flow velocities Uc are thus measured.

2.2. Experimental results

The critical flow velocity is plotted in Figs. 3 and 4 as a function of the ribbon length for each material and for each

width. In all cases, two regimes may be observed. For short ribbons, the critical velocity depends strongly on the length,
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Fig. 2. Typical flutter motion of a hanging paper strip over a half-period.

Table 2

Characteristics of materials for the ribbons

m ðkg=m2Þ hc (m) D (Nm) Z (m)

Paper 0.0790 0.130 220� 10�6 0.065

Mylar 0.0516 0.072 24� 10�6 0.036

Fabric 0.2165 0.040 17� 10�6 0.020

Silk 0.0630 0.026 1:4� 10�6 0.013

m, mass per unit area; hc, buckling height; D, flexural rigidity derived from Eq. (1); Z, reference length.
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whereas for long ribbons the critical velocity is weakly dependent on the length. This is more pronounced in the case of

paper and Mylar, Fig. 3, than in the case of fabric and silk, Fig. 4. These evolutions are qualitatively similar to those

observed for a fluid-conveying pipe (Doaré and de Langre, 2002).
3. Model

3.1. Unsteady potential flow model

Considering the aspect ratio L=B, as discussed in the first section, we use here a slender-body approximation whereby

the fluctuating velocities are only in the ðy; zÞ plane and an unsteady potential flow model to derive the fluid action,

following Datta and Gottenberg (1975). The equation governing the lateral deflection of the strip then reads

(Paı̈doussis, 2003)

D
q4Y

qX 4
�

q
qX

ðmgðL � X Þ � MU2Þ
qY

qX

� �
þ 2MU

q2Y
qXqt

þ ðm þ MÞ
q2Y
qt2

¼ 0, (2)

where Y is the deflection of the strip, t is time, g is gravity, L is the total length of the strip, U is the flow velocity and M

is the added mass due to the presence of the fluid. For a unit area of strip, the added mass which scales all fluid effects is

taken as M ¼ prB=4. This models the added mass of an infinitely long rigid plate of width B in a transverse motion,

where the added mass per unit length is Ma ¼ prB2=4, leading to the value of M ¼ Ma=B. Note that the added mass in

air is not negligible here, being of the same order as the ribbon mass. In Eq. (2) the local fluid forces, which are scaled by

the added mass M, are of three kinds: an added inertia force independent of U, a Coriolis type force proportional to U,

and a stiffness force proportional to U2.
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Fig. 4. Effect of ribbon length on the critical velocity for flutter: (a) fabric and (b) silk. Ribbon width: �, 20mm; +, 30mm; o, 55mm.
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Fig. 3. Effect of the ribbon length on the critical velocity for flutter: (a) paper and (b) Mylar. Ribbon width: �, 20mm; +, 30mm; o,

55mm.
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Friction due to axial flow along the two sides of the ribbon have also been taken into account in the original model of

Datta and Gottenberg (1975), through its additional tensioning effect, with the corresponding local tension

TðX Þ ¼ mgðL � X Þ þ f rU3=2n1=2ðL1=2 � X 1=2Þ, (3)

where n is the viscosity of air and f ¼ 1:328 is the laminar friction coefficient. Also, the dimensionless parameter F that

scales tension due to friction and tension due to gravity at the upper end is

F ¼
f rn1=2U3=2

mgL1=2
. (4)
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In all our experiments we have Fo0:05. Hence, taking into account friction will have little influence on the predicted

critical velocities. Another approximation on the role of friction for very long ribbons can be given as follows: close to

the downstream end, a first-order expansion of TðX Þ in Eq. (3) is TðX Þ ¼ mgð1þ ðF=2ÞÞðL � X Þ. This yields an

apparent increase of the tension due to gravity by a factor of ð1þ F=2Þ only. Clearly, for Fo0:05, friction does not play
any role in our experiments and we shall neglect it from now on.

The boundary conditions associated to Eq. (2) are

Y ð0Þ ¼
qY

qX
ð0Þ ¼ 0;

q2Y

qX 2
ðLÞ ¼

q3Y

qX 3
ðLÞ ¼ 0, (5)

respectively, for the clamped top and for the free extremity at the bottom. The boundary condition at the downstream

end, in a slender body approximation, takes the form of conditions on the shear force and bending moment. The

condition used here in Eq. (5) implies that no particular lift is generated there. A full discussion on the effect of other

choices of boundary conditions may be found in Paı̈doussis (2003) in the parallel case of cylinders with various end

shapes.

In order to now define dimensionless variables we use as reference the length

Z ¼ ðD=mgÞ1=3 (6)

instead of the length of the ribbon, following Doaré and de Langre (2002). This is necessary as we seek to vary the

length L itself. This new length Z results from the relative magnitudes of the flexural rigidity and stiffness due to tension

induced by gravity. Here Z is of a few centimeters, see Table 2. Combining Eqs. (1) and (6) yields Z ’ hc=1:98. We now

define

x ¼
X

Z
; y ¼

Y

Z
; t ¼

mg

ZðM þ mÞ

� �1=2
t; v ¼

M

Zmg

� �1=2
U ; b ¼

M

M þ m
; ‘ ¼

L

Z
. (7)

Eq. (2) then becomes

q4y
qx4

�
q
qx

ð‘ � xÞ
qy

qx

� �
þ v2

q2y
qx2

þ 2
ffiffiffi
b

p
v
q2y
qxqt

þ
q2y
qt2

¼ 0 (8)

with clamped boundary conditions, y0ð0Þ ¼ y00ð0Þ ¼ 0 at the top end and free conditions at the bottom end,

y00ð‘Þ ¼ y000ð‘Þ ¼ 0. This equation is identical to the one used by Doaré and de Langre (2002) for long hanging fluid-

conveying pipes. Note that, for typical values of the parameters in our experiments, the dimensionless velocity v is of

order 1, so that both velocity-dependent terms in Eq. (8) are of similar order of magnitude, and none of them can be

neglected.

The dimensionless mass ratio, b, depends on the characteristics of the material of the ribbon but also on its width,

b ¼
ðrpB=4Þ

ðrpB=4Þ þ m
¼

ðrpB2=4Þ

ðrpB2=4Þ þ mB
. (9)

This originates from the added mass per unit length varying as B2 whereas the ribbon mass varies as B. Table 3 gives the

range of mass ratio in our experiments. These values show that added mass, though the fluid is air, is not negligible here.
3.2. Critical velocity

At a given dimensionless flow velocity v, the strip is unstable if one of the eigenmodes of this system has a negative

damping. The critical velocity vc is the lowest value of v such that an unstable mode exists. The governing dimensionless

parameters are the reduced ribbon length ‘, the flow velocity v and the mass ratio b. The critical velocity vc therefore

depends on two parameters, ‘ and b. We derive now the characteristics of the eigenmodes under flow, and thus the

critical velocity, using a Galerkin approximation based on the eigenmodes without flow or gravity, as in Doaré and

de Langre (2002). We use up to 50 modes in our computations. This is done for the 12 different values of b, Table 3, as a
function of the dimensionless length ‘.
In Figs. 5 and 6, we compare results of the model with experimental data on four typical cases. The dependence of the

critical velocity with length is qualitatively similar to that observed in the experiments: (a) for short ribbons the

dependence is strong, (b) for long ribbons the dependence is weak. In Doaré and de Langre (2002), the length where

transition between these two regimes occurs in a hanging pipe was found to be well approximated in dimensionless form

by ‘ ¼ 4. In Figs. 5 and 6, this appears to be also a reasonable approximation of the transition between the two regimes,
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Table 3

Mass ratio depending on the material and the ribbon width

Material Width B (mm) Mass ratio b

Paper 20 0.19

30 0.26

54 0.40

Mylar 20 0.27

30 0.35

54 0.50

Fabric 20 0.08

30 0.12

54 0.19

Silk 20 0.23

30 0.31

54 0.45
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in the computation and in the experiments. Quantitative prediction of the critical velocity for long ribbons, as for short

ribbons is found to be much more accurate for the experiments with Mylar. This will be discussed in the last section.

3.3. The long ribbon limit

Both the experiments and the model show a small dependence on length of the critical velocity for long ribbons. We may

therefore define for each ribbon an asymptotic critical velocity, v1c , by simply considering the minimum value of the critical

velocity v for all values of ‘. In the model this velocity only depends on the mass ratio b. We now compare in Fig. 7 the

experimental values of this asymptotic velocity with those derived from the model, for all values of b given in Table 3.

Several conclusions may be drawn from this comparison.

(a) Qualitatively, the order of magnitude of v1c and its scale of dependence with the mass ratio b is recovered. Note

that comparison of more refined models with similar experiments (Yadykin et al., 2001; Watanabe et al., 2002b;

Yamaguchi et al., 2000) show quantitative discrepancies of the same order of magnitude.

(b) For all materials, the experimental results of thin ribbons (B ¼ 20mm) are better approximated than those for

wide ribbons (B ¼ 54mm). This may be understood by considering that the slender-body approximation is more

applicable for thin ribbons which have a larger aspect ratio. Moreover, the effect of the finite width of the wind-tunnel

would have more influence on the wider strips.

(c) Results for Mylar and paper are more accurately predicted than for fabric and silk. As these differences in

behaviour also appear in the critical velocity for ribbons of short length, it is believed that they result from the

behaviour of the material itself, modelled here as purely elastic. The addition of internal damping in the model is

discussed further in Section 3.4.

(d) Nonlinear effects may also play a role, as the critical velocity is determined experimentally from the existence of a

limit-cycle oscillation. Yet, Yadykin et al. (2001) showed that for this problem nonlinear effects would lead to a lower

critical velocity than that predicted by the linear theory (subcritical case). Hence, nonlinear effects are not responsible

for the quantitative differences observed here.

3.4. Effect of damping

The results of Fig. 7 suggest that a mechanism depending on the material of the ribbons should be taken into account

to improve the model. We investigate here the influence of material damping, as the materials used in experiments have

very different internal structures: Mylar has a crystal-like structure, whereas the others are made of fibers, more or less

organised. Paper fibres hold tightly together compared to fabric and silk which are loosely woven. Following Paı̈doussis

(1998), the material damping is modelled by adding a new term in the dimensionless equation, leading to

s
q5y
qtqx4

þ
q4y
qx4

�
q
qx

ð‘ � xÞ
qy

qx

� �
þ v2

q2y
qx2

þ 2
ffiffiffi
b

p
v
q2y
qxqt

þ
q2y

qt2
¼ 0, (10)
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Fig. 6. Effect of the dimensionless ribbon length on the dimensionless critical velocity: —, computations; �; �, experiments. (a) Fabric,
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where s is the dimensionless internal damping,

s ¼
D0ðmgÞ2=3

D7=6ðm þ MÞ
1=2

, (11)

D0 being the internal damping coefficient. This internal damping models dissipative effects that are proportional to the

variation of local strain with time, as opposed to those proportional to velocities. The former are typically used to

model dissipative effects that take place in the structure of the material, the latter for effects related to the interaction

with the external media such as added fluid damping for instance. Note that here all dimensionless variables are built

with a reference length, Eq. (6), which is not that of the ribbon but results from the relative magnitudes of the flexural
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rigidity and stiffness due to gravity. Therefore, as the length of the ribbon is varied, the dimensionless internal damping

a defined in Paı̈doussis (1998) varies as a ¼ s=‘2. From simple free oscillation experiments, using a procedure similar to

that of Paı̈doussis (1998) we found the order of magnitude of a to be 0:1. In Fig. 8, results of the model with damping

are shown. In Fig. 8(a), where b ¼ 0:08, the computed critical velocities are higher with damping than without. In

Fig. 8(b), where b ¼ 0:50, damping leads to lower values of vc, indicating destabilisation. The destabilisation effect of

damping at high mass ratios b in Eq. (10) is a well known feature for short length systems Paı̈doussis (1998). We may
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conclude that material damping, whatever its true value, cannot be the source of all differences between the model and

the experiments, particularly at high mass ratios.
4. Discussion

4.1. On the mechanism of flutter

Using the model of Eq. (8), the mechanism of flutter is identical to that of fluid-conveying pipes, as the equation of

motion is identical. A detailed description of this may be found in Paı̈doussis (1998), but some elements need to be

recalled for the discussion on the effect of length. In the limit of small mass ratios, b51, the instability arises by

coupled-mode flutter between two modes of comparable wavelength. The fluid force responsible for this is the stiffness

term, proportional to v2 in Eq. (8), that simultaneously modifies the frequencies of the modes, allowing coalescence of

the frequencies, and produces a nonsymmetric coupling between the two modes. In our case of flow along a ribbon, this

stiffness force induced by the flow is simply the consequence of the local curvature of the ribbon surface on the local

dynamic pressure [see Paı̈doussis (2003) for a more general discussion on the relation between inviscid terms in models

for external axial flow on slender structures and in models for internal axial flow]. Note that the limit case of b ¼ 0 is

identical to that of dynamic instability of a beam subjected to a compressive follower force (Bolotin, 1963). For

increasing values of the mass ratio b, the pure coupled-mode flutter is progressively modified, flutter arising by a

continuous evolution of the characteristics of one of the modes, without coalescence of the frequencies.
4.2. On the numerical method

The Galerkin method used here is a straightforward extension of that used for various problems of fluid-conveying

pipes in Paı̈doussis (1998) or ribbons in axial flow (Datta and Gottenberg, 1975). It is identical to that used by Doaré

and de Langre (2002) to analyse the effect of length on the stability of fluid-conveying pipes. The modes used in the

Galerkin expansion are those of a cantilevered beam, without tension induced by gravity nor flow effects. A typical

convergence of the results is shown in Fig. 9(a), where the critical velocity for a long ribbon is shown to become

independent of the number of modes for more that 15 modes approximately in that case. Fig. 9(b) shows that whereas

the use of 5 modes only would give a good approximation for the critical velocity of a short ribbon, say ‘o5, it yields

erroneous results for longer ribbons.

Indeed, only a small number of modes is needed to compute the critical velocity for short systems, as the instability

results then from the combination of the first modes only. Paı̈doussis (1998) discusses a similar point on the number of

modes needed to properly predict the instability threshold of fluid-conveying pipes, depending on the mass ratio b. He
showed that the loops in the critical velocity curve were related to the increase in the (small) number of modes playing a

role in the instability. Here, similar loops can be observed in the numerical predictions of the critical velocity when the

length is varied, so that an increase of the number of modes playing a role in the instability may be expected. In fact, we

observed, both in experiments and in computation, that for long systems the part of the ribbon that moves in the

instability is confined to the lower part, that its extent is nearly independent of length, as well as the apparent

wavelength. We interpret this as the instability resulting from the combination of modes that have mode shapes with

about that constant wavelength: these modes having higher and higher ranks as the length is increased, more and more

modes are needed to accurately predict the critical velocity. If the number of modes used is not sufficient, an erroneous

increase of the critical velocity with length is found. This is parallel to the erroneous prediction of the critical velocity at

high mass ratio for short pipes, as discussed in Paı̈doussis (1998).

A typical mode shape near the instability threshold for a long ribbon, Fig. 10, shows that the set of modes used allow

to describe a motion similar to that observed in the experiments, Fig. 2.
4.3. On the effect of length

The experimental and numerical results presented here show that there exists a length above which the critical

velocity for flutter of hanging ribbons in axial flow becomes approximately independent of length. In the experiments

this appears for all ribbons tested. Earlier experimental results by Datta and Gottenberg (1975) did not allow to

demonstrate this long ribbon regime, because of the scatter of experimental data. The present experiments, with several

materials and several aspect ratios, cover a much larger parameter space than that of Datta and Gottenberg (1975).
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Fig. 9. Effect of the number of modes used in the Galerkin approximation on the computed critical velocity v. (a) Evolution of the

ratio vc=v1c with the number of modes N, for ‘ ¼ 15, b ¼ 0:08. (b) Evolution of the critical velocity with length using 5 modes (...) or 50
modes (—), for b ¼ 0:5.

(a) (b)

Fig. 10. Computed mode shape at instability for b ¼ 0:26, ‘ ¼ 15, v ¼ 3. (a) Real (—) and imaginary ð- � -Þ part of the mode shape.

(b) Deformation at four instants of the cycle of oscillation.
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Our numerical results are also consistent with those obtained by Doaré and de Langre (2002) for hanging fluid-

conveying pipes, who evidenced a long pipe regime. We have shown that the equation proposed in Datta and

Gottenberg (1975) may be put in a dimensionless form identical to that used by Doaré and de Langre (2002). Using the

same equation but with terms accounting for axial friction of the flow, Datta and Gottenberg (1975) and more recently

Yadykin et al. (2001) found that the critical velocity should increase with length for very long systems, in contradiction

with our finding. Friction is not the reason for the difference between our results and theirs, as we have shown here that

frictional force effects play a negligible role in this range of parameters, in comparison with gravity. The difference may

be explained by considering that in their Galerkin computations these authors used a much smaller number of modes: 3

in Datta and Gottenberg (1975) and 8 in Yadykin et al. (2001), while we used up to 50 in our computations. The

convergence of results was rightfully tested by both authors on the critical velocity, but at a length that was below those

we are considering here. As we have shown in the preceding section, the increasing number of modes that play a role in

the instability requires, for long ribbons, the use of a larger set of them in the Galerkin approximation.

4.4. On systems tensioned by friction

For other slender systems with axial flow, friction instead of gravity may be the dominant tensioning force. This is the

case of horizontal systems such as strips (Watanabe et al., 2002a; Yamaguchi et al., 2000) or cylinders (Ni and Hansen,

1978). The main difference from the case analysed in this paper is that the tensioning force then increases with the flow

velocity U, instead of being constant for gravity-induced tension.

Moreover, in the case of axial flow along cantilevered flat structures of smaller aspect ratio, we have pointed out that

the physical mechanism of coupling between the motion and the flow differs, because of the change of the plane where

the dominant fluctuations of the flow exist. Some comparison may nevertheless be made, as follows. In Watanabe et al.

(2002b) the dimensionless mass parameter m and velocity parameter U�
S depend on the dimensional length L and

velocity U as U�
S
UL3=2 and m
L�1. A constant critical velocity would therefore imply that U�

S varies as m�3=2. In
Watanabe et al. (2002b), Fig. 9, this is not the case for long systems, where m51, both for experiments and analytical

models. Note that models and experiments in that range differ by about an order of magnitude in critical velocity, but

that the variation with m is parallel. Using these data, it appears that the dimensional critical velocity always decreases

with L for such systems. Note that in the intermediate range 0:1omo1 the experimental data are such that U would be

almost constant with L. In Yamaguchi et al. (2000) the dimensionless parameter including the flow velocity (denoted by

b) varies like U�2L�3. In the range of 0:1omo1 experimental and computational results show that b
m3, which implies
a constant dimensional velocity when the length is varied. Yet, for longer systems, as pointed out by Yamaguchi (2002),

numerical predictions yield an almost constant b, so that the velocity would decrease with length as U
L�3=2.

Therefore, in terms of the effect of length, systems with lower aspect ratio L=B and tensioning induced by friction do

not seem to reach a limit state where the critical velocity does not depend on length, contrary to what has been observed

here for hanging ribbons.

For cylinders in axial flow, such as towed cyclinders, the fluid forces at the downstream free end play a key role in the

mechanism of the instability (Paı̈doussis, 2003). Depending on the shape of this end, local fluid forces acting there may

induce a partially follower force. Triantafyllou and Chryssostomidis (1984) showed that a regime with constant critical

velocity for divergence instability may exist for long cylinders, but that its characteristics strongly depend on the

proportion of follower and non-follower forces at the end. Recent computations showed that, for very long systems of

this type, a behaviour similar to that presented here for ribbons can be predicted, where a flutter instability exists

independently of length (de Langre et al., 2005).
5. Conclusion

We have shown experimentally that for hanging ribbon-like structures, i.e. structures of large aspect ratio, the flow

velocity that causes flutter does not depend on their length, provided they are long enough. This was observed for a

wide range of material and geometrical parameters.

This effect can be understood, at least qualitatively, by considering a simple model of unsteady potential flow along a

slender body. Previous uses of this model did not yield the existence of a limit regime for long ribbons, because the

number of modes used in the Galerkin approximation was not sufficient to capture the localized flutter at the

downstream end. A parallel has been made with the case of hanging fluid-conveying pipes.

For other related systems, such as flags tensioned by friction, existing experiments and models do not show similar

behaviour for long systems, which points out the effect of the aspect ratio.
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